Welcome

Thank you for joining us tonight! We are looking forward to your feedback. The presentation will begin shortly. A couple ground rules for our discussion tonight:

1. Please keep your microphone muted.
2. We want to hear from you! Please enter your questions into the chat, and they will be addressed in turn, after the initial presentation.
City Field Operations
Campus

August 31, 2020 Public Information Meeting
Presentation Agenda

1. Introduction
2. Existing Facilities Conditions
3. City of Lawrence Strategic Plan
4. Farmland Site
5. Programming Process
6. Neighborhood Impacts
7. Lawrence Field Operations Campus Master Plan
8. Sustainability Objectives
9. Construction Phasing
10. Project Funding
11. Project Imperatives
12. Questions
Why This Project

- 20 maintenance-oriented facilities
- Employee safety
- Decentralized locations
- Insufficient space
- Lack of security
- Floodplain/floodway
- Environmental concerns
- Deferred maintenance
New Facility Goals

- Consolidated campus that centralizes staff and facilities
- Optimize use of facilities, functions and staff roles
- Address storage and facility needs now and in the future
- Address deferred maintenance and non-compliant / unsafe conditions
- Align with City of Lawrence Strategic Plan goals
- Respect existing neighborhood conditions
- Utilize sustainable design best practices
- Utilize multiple funding sources through a multi-year phased approach
April 11, 2017 Presentation to CC
Departmental space needs analysis – 75 acres minimum
Site selection team formed
May 7, 2019 Presentation to CC – Authorization to Issue RFP
October 15, 2019 – CC Meeting presentation – award contract to Dake Wells design team
August 31, 2020 – Public Meeting
September 15, 2020 – CC Meeting presentation – provide update on Field Operations Campus Master Plan
The Project Team

Andy Ensz
City of Lawrence

Andrew Cooper
Oertel Architects

Tara Bray
Dake Wells Architecture

Aaron Gaspers
CFS Engineers

Dan Maginn
Dake Wells Architecture

Josh Hemberger
Dake Wells Architecture

Alex Reeves
Dake Wells Architecture

Jim Schuessler
CFS Engineers
Master Planning Scope

1. Project Objectives & Site Discovery
2. Programming & Interaction
3. Space Needs & Site Needs
4. Initial Test Fits
5. Traffic Impact Study
6. Conceptual Design
7. Public Information Meeting
8. Geotechnical Exploration Report
9. City Commission Meeting
10. Final Master Plan, Concept Design & Report
11. Concept Design Continues (Phase 1)
Introduction

12 City Divisions

• **CMG** – Central Maintenance Garage
• **FAC** – Facility Maintenance Division
• **FOR** – Forestry Division
• **HOR** – Horticulture Division
• **HHW** – Household Hazardous Waste
• **INS** – Inspections Division

• **SWD** – Solid Waste Division
• **STWT** – Stormwater Division
• **STRT** – Streets Division
• **TRAF** – Traffic Division
• **WSWT** – Wastewater Division
• **WTDT** – Water Division
Existing Conditions – 11th and Haskell

• Solid Waste, Central Maintenance Garage, Streets, Stormwater, Forestry, and Horticulture Divisions are located at 11th and Haskell

• Fueling Station (and underground tanks) located in the Floodway
Flood Risk

- City Code Chapter 20 Article 12
- **New construction or improvements are prohibited within floodway**
- Many of the requirements in this Article are not currently met at 11th & Haskell
In 2017, heavy rain caused flooding which took out Leawood Park and Recreation's entire fleet, disrupting their operation and forcing them to split the Department and temporarily relocate in other Leawood facilities. A replacement facility is planned for completion in 2022.
Existing Conditions

Central Maintenance Garage Offices

Solid Waste Division Meeting Room/Break Room
Existing Conditions

Central Maintenance Garage Work Bays

Traffic Division

City of Lawrence
Lawrence MSO Field Operations staff are considered essential workers by the State of Kansas.
The City Commission is updating the strategic plan. The new plan will build on the 2017 Strategic Plan, which include key measures summarized below:

- Address deferred facility needs
- Support community growth with future oriented strategies
- Improve service efficiency and resiliency
- Employ environmental stewardship, compliance and sustainability
- Prioritize employee safety, well being and morale
Site Selection Process

- 4/11/17 – City Commission Meeting presentation to discuss conditions of existing facilities resulted in Departmental space needs analysis and early stages of this project

- 75 acre site minimum

- 11/2018 – Site selection evaluation process -- 12 sites were evaluated based on weighted scoring criteria: Size, location, infrastructure, ownership, availability, accessibility, zoning, cost, public acceptance, operational risk
The former Farmland Industries Nitrogen Plant began operations in 1954 and produced a variety of fertilizer products. When the City of Lawrence acquired the 467-acre former Farmland Industries site in 2010 after Farmland filed for bankruptcy, a commitment was made to manage nitrogen-laden water on the property.
Buildable Area

- Buildable Area
- Property Line
- Property Line Setback
Site Images
Programming Process

• Interviewed departmental leadership and staff
• Toured existing facilities
• Developed and administered surveys
• Weekly progress check-ins
• Current FTE Staff Counts: 292
• Future FTE Staff Counts: 475
• Current Vehicular Counts: 223
• Future Vehicular Counts: 312
Adequate Ventilation - Vehicle Areas

75 responses

Programming Process

City of Lawrence
Are there industry related operations that are not possible given existing facility limitations / resources?
75 responses

- Yes: 40%
- No: 24%
- Maybe: 36%
Fleet Circulation

- Fleet traffic to circulate down O’Connell Road to East 23rd Street
- No general Fleet traffic on East 19th St.
- 15th Street to serve as secondary emergency access point; not intended for fleet usage
Existing Traffic

Existing AM Traffic
[X%] Entering
(X%) Exiting

Existing PM Traffic
[X%] Entering
(X%) Exiting

City of Lawrence
Noise Control

- Buildings to provide acoustic buffering
- Operational activity to occur primarily in the center of the campus
- Distance, vegetation and structures will all be utilized to mitigate sounds of operational activity

= Berm Location
Light Pollution

- **Goal:** eliminate unnecessary artificial light while no humans are present
- Install lighting with proper cutoff to mitigate light pollution outside of areas of operational activity
- Photometric analysis will be performed during the design each phase
1. Fuel Island
2. Central Maintenance Garage
3. MSO Building: Streets, Stormwater, Water, Wastewater, Traffic and Inspections Divisions
4. Solid Waste Division
5. Facility Maintenance Division
6. Forestry and Horticulture Divisions
7. Household Hazardous Waste
Field Operations Campus
View looking Northwest
Field Operations Campus
View looking North
Central Maintenance Garage
View looking East
Sustainability Objectives

Design for Integration | Design for Community | Design for Ecology | Design for Water | Design for Economy
Design for Energy | Design for Wellness | Design for Resources | Design for Change | Design for Discovery

(Based on AIA COTE top 10)
• Roof runoff rainwater collection potential: 11,897,015 gallons

• Collected rainwater is proposed to be used in wash bays and for landscaping on site

• **Goal**: reduce water usage by 50%
The master plan works to maintain existing vegetation.

The existing tree line to the West will be used as a buffer between the Field Operations Campus and the surrounding neighborhoods.

Goal: plant three new trees for every one mature tree that is removed during construction.
Sustainability - Energy

- Ensure that all buildings are PV ready and well daylit
- **Goal**: Offset lighting energy usage by 100%
Phasing

- Final phasing is still being determined; this is one scenario being explored.
Phase 1

- Entry road
- Fuel Island
- MSO Building: Water, Wastewater, Streets, Stormwater, Traffic & Inspections Divisions
Phase 2

- Central Maintenance Garage
- Construction includes moving contaminated soil to soil remediation area
- Remediated soil will be used for landscaping on site
Phase 3

- Solid Waste Division
- Construction includes moving contaminated soil to soil remediation area
- Remediated soil will be used for landscaping on site
Phase 4

- Facilities Maintenance Division
- Forestry and Horticulture Divisions
- Loop Road
Phase 5

- Household Hazardous Waste Division
Project Funding

<table>
<thead>
<tr>
<th></th>
<th>2019*</th>
<th>2020*</th>
<th>2021</th>
<th>2024**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilities</td>
<td>$590,000</td>
<td>$780,000</td>
<td>$6,030,000</td>
<td></td>
</tr>
<tr>
<td>Solid Waste</td>
<td></td>
<td>$4,500,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stormwater</td>
<td></td>
<td>$3,900,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GO Debt</td>
<td></td>
<td></td>
<td></td>
<td>$14,520,000</td>
</tr>
</tbody>
</table>

- * Revised CIP
- ** Projected CIP - future CIP funding will be based on estimates from preliminary design
1. **Consolidate municipal operations onto a single campus.**

Create a Master Plan for an efficient campus environment, encouraging spaces shared by multiple Divisions.
2. **Remediate the Farmland site through phased construction.**

 Develop a phasing strategy that allows for the site to be methodically remediated over time.
3. Improve working conditions and safety.

Conditions in some existing facilities do not meet current standards with regard to operation, ventilation, safety and flood mitigation. It is imperative that the staff that provide critical services are allowed to work in an efficient, safe facility.
4. Be a great neighbor.

The Farmland site is adjacent to a residential neighborhood. Carefully study impacts and design to control traffic, sound, visual and light impacts on this community through careful design.
5. **Contribute to the surrounding ecosystem.**

Plant three new trees for every mature tree removed during construction. Remediate site to establish 5 feet of fertile soil over 50% of the buildable site within 5 years, and fully remediate the soil on the entire site within 50 years.
6. Reduce water usage.

Benchmark indoor water use and develop strategies to reduce by 20%, without reducing functionality. Explore capturing water from roofs, and using it to wash vehicles and irrigate landscaped areas.
7. **Reduce stormwater impacts.**

Design the site to capture stormwater run-off so as to not burden the municipal stormwater system, and to not allow contaminated run-off to flow beyond site perimeter.
8. Design for the present...and the future.

Consider current needs in context of predicted future industry trends, and design to create facilities that are flexible enough to adapt. Use Life Cycle Analysis tools to balance initial construction costs with longer term operational costs. LCA also includes understanding the costs and benefits of protecting vehicles from the elements.
9. **Show leadership in energy efficient design.**

Use energy modelling and analysis in early stages to make wise decisions on energy HVAC systems, daylighting strategies and insulation levels. Use 100% renewable energy and ensure that all buildings contribute to renewable energy goal, or at a minimum are "PV ready".
10. Promote the health and well being of staff.

Focus on glare free daylighting, acoustic controls, access to ventilation and fresh air, soil vapor intrusion and other environmental components that contribute to workers feeling healthy and productive.
11. Be resilient.

Design to maintain continuous operation in the midst of and aftermath of disasters. Design to adapt, should future emergencies dictate temporary uses for the project. Design to meet typical social distancing requirements of future pandemics. Additionally--address resiliency of some existing facilities. Although some are obsolete and located in flood-prone areas, some have the potential to be repurposed to address community needs.
Questions?

(https://lawrenceks.org/mso/field-ops-campus/)