DRAFT GEOTECHNICAL ENGINEERING REPORT
STRATFORD ROAD WATER TANK
STRATFORD ROAD AND SUNSET DRIVE
LAWRENCE, KANSAS

Prepared For:

BLACK & VEATCH CORPORATION
8400 Ward Parkway
Kansas City, Missouri 64114

Prepared By:

KAWS VALLEY ENGINEERING, INC.
14700 West 114th Terrace
Lenexa, Kansas 66215

October 3, 2014

Project No. C14G7737
October 3, 2014

Mr. Andrew Hansen
Black & Veatch Corporation
8400 Ward Parkway
Kansas City, Missouri 64114

RE: DRAFT GEOTECHNICAL ENGINEERING REPORT
STRATFORD ROAD WATER TANK
STRATFORD ROAD AND SUNSET DRIVE
LAWRENCE, KANSAS

Dear Mr. Hansen:

This report presents the results of a subsurface exploration and geotechnical engineering analysis conducted for the referenced project. This exploration has been conducted in accordance with the proposal dated May 6, 2014. This exploration and analysis was conducted as authorized by Black and Veatch Corporation.

Completing this report is information including a plan of the site and boring locations, logs of borings, physical laboratory testing results, corrosivity test results, a general stratigraphic column, and a boring profile.

We appreciate the opportunity to be of service to you on this project. Please do not hesitate to contact us if you have any questions or comments.

Respectfully submitted,
Kaw Valley Engineering, Inc.

Jessica A. Nixon, P.E.
Staff Engineer

Copies submitted: (5)
TABLE OF CONTENTS

PROJECT AND SITE DESCRIPTION .. 1
FIELD EXPLORATION ... 1
LABORATORY TESTING PROGRAM .. 2
SUBSURFACE CONDITIONS .. 2
Groundwater .. 3
DESIGN CONSIDERATIONS AND RECOMMENDATIONS .. 3
Site Preparation ... 3
Structural Fill .. . 4
Soil Excavation .. 4
Differential Settlement .. 4
Allowable Bearing Pressures ... 4
Granular Fill for Pipe Embedment ... 5
Seismic Soil Classification .. 5
Corrosion Protection .. 5
OBSERVATION OF CONSTRUCTION ... 5
LIMITATIONS ... 6

ILLUSTRATIONS

Plate 1 – KVE Boring Location Drawing
Plates 2 and 3 – Logs of Borings
Plate 4 – Bedrock Core Photographs
Plate 5 – Boring Log Profile
Boring Log Reference Legend

APPENDICES

Appendix A – Grain Size Analyses Results
Appendix B – Corrosivity Test Results
Appendix C – Soil Survey Map and Soil Descriptions
Appendix D – Bedrock Information
Appendix E – Field Resistivity Test Results
PROJECT AND SITE DESCRIPTION

This exploration program was conducted for the purpose of identifying subsurface conditions for a new water tank and associated service mains for the City of Lawrence, Kansas. The new water tank is proposed to be located on an existing city-owned parcel of land located northwest of the intersection of Stratford Road and Sunset Drive in Lawrence, Kansas. The condition of the site at the time of drilling was an open, grass covered field surrounded by mature trees and bounded by an existing water tower on the west, a wooded area and residences to the north, Sunset Drive on the east, and Stratford Road on the south. The purpose of this report is to make recommendations regarding the construction and design of the proposed water tank and associated water mains based upon the field exploration and laboratory testing results.

The proposed construction is to include the rehabilitation or replacement of the Stratford Elevated Tank. Possible replacement options provided were 130 foot tall self supporting 0.5, 0.75, and 1 million gallon water tanks. The proposed finish grade elevation was not provided at the time of the report, but was assumed to be near the existing grade.

FIELD EXPLORATION

The field drilling exploration was performed on September 4 and 5, 2014 and included a total of two borings, identified as B-1 and B-2. Plan boring locations were provided by Black & Veatch Corporation. Measurements from existing surface features were used to locate the borings in the field. Surface elevations at the boring locations are displayed on the logs of borings. Field resistivity testing was performed on September 5, 2014 at B-1 and B-2 using the Wenner Four-Pin Method at spacings requested by Black & Veatch Corporation. The boring locations and elevations are displayed on Plate 1 and the logs of borings, respectively.

The borings were drilled with a truck-mounted CME-55 drill rig using 4 inch continuous flight augers. Soil samples were obtained at 2-foot intervals throughout the borings. A hand-held penetrometer was used on the tube samples to determine an indication of the unconfined compressive strength of cohesive soils. Bedrock core samples were obtained in both borings using NQ2 wireline coring methods. Boring B-1 was drilled to a depth of 24.5 feet and Boring B-2 to a depth of 16.1 feet. Detailed logs of the borings are displayed on Plates 2 and 3. Photographs of the bedrock cores are presented on Plates 4A, 4B, and 4C. A cross section of the boring logs is presented on Plate 5.

Upon completion of drilling, the borings were backfilled using a mixture of bentonite chips and soil cuttings. The bedrock core was examined, classified, and recorded on the boring logs upon return to the laboratory by a KVE geologist. Rock quality designation (RQD), and percent recovery were also calculated and included on the boring log. RQD is the percentage of the total core run in competent sections greater than 4 inches in length.

The borings were logged in the field by the geologist working with the drill crew. The field logs were developed based upon visual classifications of materials encountered during drilling, as well as the logger's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's interpretation of the field logs and include revisions based upon results of the laboratory testing and a geologist’s review of the bedrock cores.
LABORATORY TESTING PROGRAM

The laboratory testing program was designed to determine the pertinent engineering and index properties of the soil and bedrock. Tests performed on selected soil samples included moisture content, dry density, Atterberg limits, and unconfined compressive strength. In addition, grain size analyses were performed on cohesive soil samples. Samples of the bedrock cores were tested for density and unconfined compressive strength. Results of the moisture content, density, Atterberg limits, and unconfined compressive strength tests are displayed upon the boring logs. Grain size analyses results are displayed in Appendix A. Testing was performed in accordance with applicable ASTM standards.

Laboratory tests of the limestone bedrock yielded unconfined compressive strengths ranging from 2,919 psi to 10,063 psi. Moisture contents for the clay soils ranged from 19.2 to 25.7 percent, with in-situ dry densities ranging from 95.6 to 111.3 pounds per cubic foot. Measured unconfined compression strengths for the soils ranged from 2,177 to 25,004 pounds per square foot (psf). Atterberg limits tests indicate the upper soils generally classify as CL-CH (lean to fat) and CH (fat) inorganic clays of moderate and high plasticity, respectively, in accordance with the Unified Soil Classification System. These soils tend to have moderate and high swell potentials, respectively.

Two soil samples were selected for laboratory chemical analyses to assist in evaluation of corrosivity characteristics. The samples were tested for parameters including resistivity, pH, redox potential, sulfides, water-soluble sulfate, and water-soluble chloride. The chemical analyses were conducted by Pace Analytical Services, Inc. of Lenexa, Kansas. The test results and chain of custody forms are displayed in Appendix B.

SUBSURFACE CONDITIONS

Subsurface conditions over the site include undisturbed glacio-fluvial soil mantle over bedrock limestone and shale. The depth of soil mantle was 9.0 feet at Boring B-1 and 6.7 feet at Boring B-2.

The Web Soil Survey indicates that the surficial soils over the majority of the site are identified as the Woodson silt loam. The parent material for this soil is listed as silty and clayey alluvium. Copies of the soil map and soil descriptions are attached in Appendix C.

Bedrock consists of weathered, thin, wavy-bedded limestone at a depth of 9.0 feet in Boring B-1. However, weathering appeared to be variable from 10.6 feet to a depth of 18.6 feet, with hard, cherty zones of less weathered limestone separating moderately weathered limestone. Shale partings were also apparent in the limestone. At a depth of 18.6 feet down to 20.8 feet, a light brown to olive gray, highly weathered to moderately weathered, argillaceous shale was encountered. As the boring progressed from 20.8 feet down to 24.2 feet, a slightly weathered to fresh black fissile shale was encountered. Below 24.2 feet, an unweathered, hard, cherty, bluish gray limestone was observed. The boring terminated at 24.5 feet in this rock unit.

At Boring B-2, the thin, wavy-bedded limestone was encountered from 6.7 feet to 16.1 feet. The boring terminated at 16.1 feet within the limestone.
The bedrock units underlying the site are thought to be part of the Pennsylvanian Age Shawnee Group, specifically, the Plattsmouth Limestone Member and the Heebner Shale Member of the Oread Formation.

Groundwater. Groundwater was not encountered in either boring prior to coring. At completion of coring operations, the water level at B-1 and B-2 was at 3.0 and 4.0 feet, respectively. These results would seem to indicate that the strata at the site are not very permeable. However, it should be understood that the level of the groundwater may fluctuate due to rainfall and other climatic factors, and that groundwater may or may not be present during construction or at other times during the life of the project.

DESIGN CONSIDERATIONS AND RECOMMENDATIONS

On the basis of the anticipated finish grade elevations near existing grade, minimal cuts and fills are anticipated for the proposed construction area. We recommend that the proposed water towers be founded on continuous ring footings founded upon the existing limestone bedrock. A net allowable bearing pressure of 40,000 psf may be used to design and proportion these footings.

Site Preparation. Site preparation should commence with stripping of all vegetation, topsoil, and other deleterious materials from the construction areas. Stripping should extend a minimum of 5 feet beyond the structure footprint. A minimum stripping depth of approximately 8 inches should be anticipated. However, stripping depths will likely vary and should be adjusted to remove all vegetation and root systems. Soils removed during site stripping operations could be used for final site grading outside the proposed tower area.

Following stripping and cutting to grade, the moisture content of the exposed soils should be evaluated. Depending on the in-situ moisture content of the exposed soils, moisture conditioning of the exposed grade may be required. The moisture content of the exposed grade should be adjusted to within the range recommended for structural fill to allow the exposed material to be compacted to a minimum density of 95% of maximum density as determined by the standard Proctor compaction procedure. Extremely wet or unstable areas that hamper compaction of the subgrade may require undercutting and replacement with structural fill or other stabilization techniques. Suitable structural fill should be placed to design grade as soon as practical after reworking the subgrade to avoid moisture changes in the underlying soils.

Following moisture conditioning of the exposed soils, it is recommended that the exposed grade be proofrolled to provide a more stable base for placement of structural fill and to assist in identifying soft or disturbed areas. Unsuitable areas identified by the proofrolling operation should be undercut and replaced with structural fill. Proofrolling can be accomplished through use of a fully-loaded, tandem-axle dump truck or similar equipment providing an equivalent subgrade loading.
Structural Fill. On-site soils are acceptable as general fill and backfill materials. All structural fill should consist of approved materials, free of organic matter and debris. Imported fill material should consist of low swell potential cohesive soils with a liquid limit less than 45 and a plasticity index between 10 and 25.

All structural fill should be placed in lifts having a maximum loose lift thickness of 8 inches, with cohesive soils compacted to a minimum of 95% of the material’s maximum dry density as determined by ASTM D 698 (standard Proctor compaction) and granular soils compacted to a minimum of 70% of relative density. This includes all fill under and adjacent to pavements and any structures. Cohesive soil backfill under landscape areas should be compacted to a minimum of 90% of the materials maximum density; the recommendation for granular soil backfill is the same. The moisture content of cohesive soil fill at the time of compaction should be within a range of optimum moisture to 3% above optimum moisture content as defined by the standard Proctor compaction procedure. The recommended moisture content range for granular soil fill is 2% below to 2% above optimum moisture.

The geotechnical engineer should approve all fill material. Approval requires that a moisture-density relationship and Atterberg limits be performed for each proposed fill material prior to its placement.

Continuous observation by the geotechnical engineer or his representative should be maintained during site preparation and compaction of all fill and backfill materials.

Soil Excavation. The on-site soils are classified as Type B, as indicated by the OSHA Excavation Standard Handbook. Using sloping to protect against cave-ins, Type B soils can be cut at no steeper than a 1:1 vertical slope. If these slopes cannot be achieved, shoring or bracing will be required.

So as to avoid any unnecessary collapsing or sliding, no more trench should be excavated ahead of the current pipe placement than is necessary. All trenches should be backfilled before the end of the day.

Differential Settlement. If the water tank foundation elements are founded on the limestone that underlies the site, differential settlement between the pipeline and the water storage tank should be less than 1 inch.

Allowable Bearing Pressures. It is anticipated that the footing excavations for the proposed water tank will extend through the existing soil mantle and loose weathered limestone, and bear in the hard limestone. An allowable bearing pressure of 40,000 psf for foundation elements bearing within the limestone bedrock can be generally utilized. The bedrock zone for which this allowable pressure may be utilized is between elevations 1,030 and 1,023 feet.

Preparation of the bearing surface should include the remove of all loose, weathered and broken rock to expose the underlying intact, sound limestone. Excavations that extend into the limestone may require the use of pneumatic breakers or some other method of hard rock removal. If joints or cracks are encountered in the limestone bearing surface and these joints or
cracks are filled with clay, it is recommended that the joints or cracks be cleaned as deep as possible and poured as the foundation is poured. The base of all footing excavations should be clean and free of all water and loose materials, prior to placement of concrete. Concrete should be placed as soon as possible after excavating the footings. The contractor should include a contingency to cover the cost of removing highly weathered and/or unsuitable rock.

Granular Fill for Pipe Embedment. The granular fill for pipe embedment should be a crushed stone product similar to ASTM C-33. The geotextile separation layer or wrap properties should conform to AASHTO M288, Class 2 specifications for separation geotextiles.

Seismic Soil Classification. According to the 2012 International Building Code, the site soils are best characterized by the “Class C” site classification. This classification can be utilized by the structural engineer as a seismic design parameter.

Corrosion Protection. Laboratory measurements of pH, redox potential, and chemical tests for the presence of chloride, sulfate, and sulfide ions were conducted. The results of this testing can be found within this report in Appendix B. These particular chemical tests do not indicate an increased potential for corrosion problems. However, both laboratory and field resistivity tests (results attached in Appendix E) indicated resistivities in the range of 16,600 to 2,514 ohm-cm. These tests indicate there is a mild to moderate potential for future corrosion problems with the water main installation. Kaw Valley Engineering recommends any buried pipe be coated or lined with a chemically inert material to reduce the potential for ongoing corrosion.

Lateral Loads. A coefficient of base friction of 0.30 may be used for the contact between the foundations and supporting materials.

Lateral Pressures. Unrestrained walls below grade should be designed for an equivalent active fluid pressure of 45 psf/ft. Restrained walls below grade should be designed for an "at-rest" equivalent fluid pressure of 60 psf/ft. These values assume no additional loads due to the buildup of hydrostatic pressure.

OBSERVATION OF CONSTRUCTION

The conclusions and recommendations given in this report are based on interpretation of boring data and our experience. Variations may occur from conditions observed within test borings; therefore, it is imperative to involve the geotechnical engineer in the final design and construction process.

Field observation services are viewed as a continuation of the design process. Unless these services are provided, the geotechnical engineer will not be responsible for improper use of recommendations, or failure by others to recognize conditions which may be detrimental to the successful completion of project.
LIMITATIONS

The analysis, conclusions, and recommendations contained in this report are based on the site conditions and project layout described herein and further assume that the conditions throughout the site, i.e., the subsurface conditions elsewhere on the site are the same as those disclosed by the borings. If, during construction, subsurface conditions different from those encountered in the exploratory borings are observed or appear to be present beneath excavations, we should be advised at once so that we can review these conditions and reconsider our recommendations where necessary.

If there is a substantial lapse in time between the submittal of this report and the start of work at the site, or if conditions or the project layout have changed due to natural causes or construction operations at or adjacent to the site, we recommend that this report be reviewed to determine the applicability of conclusions and recommendations considering the changed conditions and time lapse.

We recommend that we be retained to review the project layout and those portions of plans and specifications, which pertain to foundations and earthwork to determine if they are consistent with our findings and recommendations. In addition, we are available to observe construction, particularly site grading, earthwork, and foundation construction. We would be available to make other field observations as may be necessary.

This report was prepared for the exclusive use of the owner, architect, and engineer for evaluating the design of the project as it relates to the geotechnical aspects discussed herein. It should be made available to prospective contractors for information on factual data only and not as a warranty of subsurface conditions included in the report. Unanticipated soil conditions may require that additional expense be made to attain a properly constructed project. Therefore, some contingency fund is recommended to accommodate such potential extra costs.
ILLUSTRATIONS
Site Plan and Boring Locations

STRATFORD ROAD WATER TOWER
Stratford Road and Sunset Drive
Lawrence, Kansas

Approved By: JAN Not to Scale C14G7737

Kaw Valley Engineering, Inc.
<table>
<thead>
<tr>
<th>DEPTH (FT)</th>
<th>SOIL SYMBOL</th>
<th>SAMPLES</th>
<th>N: BLOWS/FT</th>
<th>P: TONS/SQ FT</th>
<th>REC %</th>
<th>RQD %</th>
<th>RECOVERY (IN)</th>
<th>MOISTURE CONTENT (%)</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>ATTERBERG LIMITS</th>
<th>DRY DENSITY (POUNDS/CUBIC FT)</th>
<th>COMRESSIVE STRENGTH (POUNDS/SQ IN)</th>
<th>CONFINING PRESSURE (POUNDS/SQ IN)</th>
<th>MINUS NO. 200 SIEVE (%)</th>
<th>DESCRIPTION OF STRATUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>P = 4.5</td>
<td>19</td>
<td>22.2</td>
<td>46</td>
<td></td>
<td>22</td>
<td>24</td>
<td>96.6</td>
<td>5.564</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>P = 4.5</td>
<td>18</td>
<td>19.2</td>
<td></td>
<td>111.3</td>
<td>25,004</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>P = 4.5</td>
<td>13</td>
<td>20.6</td>
<td></td>
<td>102.1</td>
<td>13,228</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>P = 4.5</td>
<td>12</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

SURFACE ELEVATION: 1040.9'
LOG OF BORING B-2

CLIENT: Black and Veatch Corporation
PROJECT: Stratford Water Tower
NUMBER: C14G7737
LOCATION: Stratford Road and Sunset Drive - Lawrence, Kansas
DATE(S) DRILLED: 9/5/14 - 9/5/14

DRILLING METHOD(S): 4" CFA AND NQ2
DRILL RIG: CME 55
DRILL RIG OPERATOR: Reece Nigh
LOGGED BY: Scott Bishop

GROUNDWATER INFORMATION:
Water level prior to coring - Dry
Water level after coring - 4.0'

SURFACE ELEVATION: 1039.2'

DESCRIPTION OF STRATUM

TOPSOIL
SILTY CLAY: Brown; stiff; slightly moist

FAT CLAY: Brown; very stiff; slightly moist

LEAN TO FAT CLAY: Red brown; very stiff; moist

LIMESTONE: Yellow brown; soft; highly weathered

LIMESTONE: Light blue gray with light yellow brown (primarily around bedding planes); hard; thin and wavy bedded; fine crystalline; with vugs (some calcite lined or filled); fossiliferous; dark gray to black chert nodules fro 8.4' to 8.7'; with highly weathered shale partings; moderately weathered (lower 2' highly weathered)
(PLATTSMOUTH LIMESTONE MEMBER)

REMARKS:
Surficial conditions - Grass

PLATE 3
Boring B-1

Surface Elevation: 1,040.9 feet

Run 1 of 3 from 10.6 – 15.5 feet Recovery: 88% RQD: 36%
Run 2 of 3 from 15.5 – 20.5 feet Recovery: 95% RQD: 70%
Boring B-1

Surface Elevation: 1,040.9 feet

Run 3 of 3 from 20.5 – 24.5 feet

Recovery: 100% RQD: 30%
Boring B-2

Run 1 of 2 from 8.4 – 11.1 feet
Recovery: 55% RQD: 19%

Run 2 of 2 from 11.1 – 16.1 feet
Recovery: 96% RQD: 46%

Surface Elevation: 1,039.2 feet
Borehole Lithology

Explanation

- USCS Low to High Plasticity Clay
- USCS Low Plasticity Clay
- USCS High Plasticity Clay
- Highly weathered Limestone
- Limestone
- Shale
- Topsoil
- USCS Low Plasticity Sandy Clay

Water Level Reading after drilling.

Delayed Water Level Reading

Kaw Valley Engineering, Inc.
14700 W 114th Terrace
Lenexa, KS 66215

Stratford Water Tower
BORING LOG REFERENCE LEGEND

DESCRIPTIVE SOIL CLASSIFICATION

Soil description is based on the Unified Soil Classification System as outlined in ASTM Designation D-2487. The Unified Soil Classification group symbol for soil descriptions shown on the boring logs corresponds with the group names listed below. The description includes soil constituents, consistency, relative density, color and any other appropriate descriptive terms. Geologic description of bedrock, when encountered, is also shown in the description column. Refer to the appropriate notes for bedrock classification.

<table>
<thead>
<tr>
<th>Group Symbol</th>
<th>Group Name</th>
<th>Group Symbol</th>
<th>Group Name</th>
<th>Group Symbol</th>
<th>Group Name</th>
<th>Group Symbol</th>
<th>Group Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW</td>
<td>Well graded gravel</td>
<td>SW</td>
<td>Well graded sand</td>
<td>CL</td>
<td>Lean clay</td>
<td>CH</td>
<td>Fat clay</td>
</tr>
<tr>
<td>GP</td>
<td>Poorly graded gravel</td>
<td>SP</td>
<td>Poorly graded sand</td>
<td>ML</td>
<td>Silt</td>
<td>MH</td>
<td>Elastic silt</td>
</tr>
<tr>
<td>GM</td>
<td>Silty gravel</td>
<td>SM</td>
<td>Silty sand</td>
<td>OL</td>
<td>Organic clay</td>
<td>OH</td>
<td>Organic clay</td>
</tr>
<tr>
<td>GC</td>
<td>Clayey gravel</td>
<td>SC</td>
<td>Clayey sand</td>
<td>PT</td>
<td>Peat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CONSISTENCY OF FINE-GRAINED SOILS

<table>
<thead>
<tr>
<th>Unconfined Compressive Strength, Qu, psf</th>
<th>Descriptive Term(s)</th>
<th>Sand & Gravel Percent of Dry Wt.</th>
<th>Fines Percent of Dry Wt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 500</td>
<td>Very Soft</td>
<td>Trace</td>
<td>< 15</td>
</tr>
<tr>
<td>500 – 1,000</td>
<td>Soft</td>
<td>Some</td>
<td>15 – 29</td>
</tr>
<tr>
<td>1,001 – 2,000</td>
<td>Firm</td>
<td>Modifier</td>
<td>> 30</td>
</tr>
<tr>
<td>2,001 – 4,000</td>
<td>Stiff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,001 – 8,000</td>
<td>Very Stiff</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,001 – 16,000</td>
<td>Hard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 16,000</td>
<td>Very Hard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELATIVE DENSITY OF COARSE-GRAINED SOILS

<table>
<thead>
<tr>
<th>N - (blows/ft)</th>
<th>Relative Density</th>
<th>Major Component</th>
<th>Size Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 3</td>
<td>Very Loose</td>
<td>Cobble</td>
<td>12 in to 3 in</td>
</tr>
<tr>
<td>4 – 9</td>
<td>Loose</td>
<td>Gravel</td>
<td>3 in to #4 sieve</td>
</tr>
<tr>
<td>10 – 29</td>
<td>Medium Dense</td>
<td>Sand</td>
<td>#4 to #200 sieve</td>
</tr>
<tr>
<td>30 – 49</td>
<td>Dense</td>
<td>Silt or Clay</td>
<td>Passing #200 sieve</td>
</tr>
<tr>
<td>50+</td>
<td>Very Dense</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRAIN SIZE TERMINOLOGY

RELATIVE PROPORTIONS

<table>
<thead>
<tr>
<th>(Components also Percent in Sample)</th>
<th>Sand & Gravel Percent of Dry Wt.</th>
<th>Fines Percent of Dry Wt.</th>
</tr>
</thead>
</table>

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. In pervious soil the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels is not possible with only short-term observation.

DEFINITIONS OF ABBREVIATIONS

CR – Core recovery, length of core recovered in each run compared to the length drilled expressed as percent
LL – Liquid limit of specimen
N – Number of blows to penetrate last 12 inches with 140-pound hammer in standard penetration test
 Blow count reported for each 6-inch interval on logs
PL – Plastic limit of specimen
RQD – Rock quality designation, aggregate length of core pieces greater than 4 inches long, expressed as percent of length drilled
TW – Thin walled tube
SS – Standard penetration test
NQ2 – 2 inches diameter core
CFA – Continuous flight augers
HSA – Hollow stem augers
EOB – End of boring
APPENDIX A

PHYSICAL LABORATORY TEST RESULTS

Grain Size Analyses Results
Grain Size Distribution

Specimen Identification
<table>
<thead>
<tr>
<th>Classification</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>Cc</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAT CLAY(CH)</td>
<td>57</td>
<td>21</td>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Grain Size in Millimeters

- **Cobbles**
 - Coarse
 - Fine

- **Gravel**
 - Coarse
 - Medium
 - Fine

- **Sand**
 - Coarse
 - Medium
 - Fine

- **Silt or Clay**
 - Coarse
 - Medium
 - Fine

Specimen Identification
<table>
<thead>
<tr>
<th>Specimen Identification</th>
<th>D100</th>
<th>D60</th>
<th>D30</th>
<th>D10</th>
<th>%Gravel</th>
<th>%Sand</th>
<th>%Silt</th>
<th>%Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-2</td>
<td>2.0</td>
<td>2</td>
<td>0.009</td>
<td>0.0</td>
<td>0.9</td>
<td>50.5</td>
<td>48.6</td>
<td></td>
</tr>
</tbody>
</table>
GRAIN SIZE DISTRIBUTION

Client: Black and Veatch Corporation
Project Name: Stratford Water Tower
Project Number: C14G7737
Project Location: Stratford Road and Sunset Drive - Lawrence, Kansas

GRAN SIZE IN MILLIMETERS

<table>
<thead>
<tr>
<th>COBBLES</th>
<th>GRAVEL</th>
<th>SAND</th>
<th>SILT OR CLAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>coarse</td>
<td>fine</td>
<td>coarse</td>
<td>medium</td>
</tr>
</tbody>
</table>

Specimen Identification

<table>
<thead>
<tr>
<th>Specimen Identification</th>
<th>Classification</th>
<th>LL</th>
<th>PL</th>
<th>PI</th>
<th>Cc</th>
<th>Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-2</td>
<td>LEAN CLAY(CL)</td>
<td>47</td>
<td>22</td>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Specimen Identification

<table>
<thead>
<tr>
<th>Specimen Identification</th>
<th>D100</th>
<th>D60</th>
<th>D30</th>
<th>D10</th>
<th>%Gravel</th>
<th>%Sand</th>
<th>%Silt</th>
<th>%Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-2</td>
<td>5.0</td>
<td>2</td>
<td>0.008</td>
<td>0.0</td>
<td>3.2</td>
<td>46.2</td>
<td>50.6</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B

CORROSIVITY TEST RESULTS
September 24, 2014

Kris Moore
Kaw Valley Engineering, Inc.
14700 W. 114th Terrace
Lenexa, KS 66215

RE: Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

Dear Kris Moore:
Enclosed are the analytical results for sample(s) received by the laboratory on September 09, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory’s Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

[Signature]

Sherri Rosenstangle
sherri.rosenstangle@pacelabs.com
Project Manager

Enclosures
CERTIFICATIONS

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

New Orleans Certification IDs
- California Env. Lab Accreditation Program Branch: 11277CA
- Florida Department of Health (NELAC): E87595
- Illinois Environmental Protection Agency: 0025721
- Kansas Department of Health and Environment (NELAC): E-10266
- Louisiana Dept. of Environmental Quality (NELAC/LELAP): 02006
- Oklahoma Department of Environmental Quality: 2010-139
- Oregon Environmental Laboratory Accreditation: LA200001
- Pennsylvania Dept. of Env Protection (NELAC): 68-04202
- Texas Commission on Env. Quality (NELAC): T104704405-09-TX
- U.S. Dept. of Agriculture Foreign Soil Import: P330-10-00119
- Washington Department of Ecology: C2078

Kansas Certification IDs
- 9608 Loiret Boulevard, Lenexa, KS 66219
- WY STR Certification #: 2456.01
- Arkansas Certification #: 13-012-0
- Illinois Certification #: 003097
- Iowa Certification #: 118
- Kansas/NELAP Certification #: E-10116

- Louisiana Certification #: 03055
- Nevada Certification #: KS000212008A
- Oklahoma Certification #: 9205/9935
- Texas Certification #: T104704407
- Utah Certification #: KS00021

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.
SAMPLE SUMMARY

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Matrix</th>
<th>Date Collected</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td>60177647001</td>
<td>B-1 4-5'</td>
<td>Solid</td>
<td>09/09/14 08:00</td>
<td>09/09/14 17:10</td>
</tr>
<tr>
<td>60177647002</td>
<td>B-2 4-5'</td>
<td>Solid</td>
<td>09/09/14 08:00</td>
<td>09/09/14 17:10</td>
</tr>
</tbody>
</table>
SAMPLE ANALYTE COUNT

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>Method</th>
<th>Analysts</th>
<th>Analytes Reported</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>60177647001</td>
<td>B-1 4-5'</td>
<td>ASTM D2974</td>
<td>DWC</td>
<td>1</td>
<td>PASI-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 9034</td>
<td>LJL</td>
<td>1</td>
<td>PASI-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 9045</td>
<td>JML</td>
<td>1</td>
<td>PASI-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 2580B</td>
<td>ESM</td>
<td>1</td>
<td>PASI-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 120.1 Resistivity</td>
<td>ESM</td>
<td>1</td>
<td>PASI-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 9056</td>
<td>OL</td>
<td>2</td>
<td>PASI-K</td>
</tr>
<tr>
<td>60177647002</td>
<td>B-2 4-5'</td>
<td>ASTM D2974</td>
<td>DWC</td>
<td>1</td>
<td>PASI-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 9034</td>
<td>LJL</td>
<td>1</td>
<td>PASI-N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 9045</td>
<td>JML</td>
<td>1</td>
<td>PASI-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SM 2580B</td>
<td>ESM</td>
<td>1</td>
<td>PASI-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 120.1 Resistivity</td>
<td>ESM</td>
<td>1</td>
<td>PASI-K</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPA 9056</td>
<td>OL</td>
<td>2</td>
<td>PASI-K</td>
</tr>
</tbody>
</table>
ANALYTICAL RESULTS

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

Sample: B-1 4-5'
Lab ID: 60177647001
Collected: 09/09/14 08:00
Received: 09/09/14 17:10
Matrix: Solid

Results reported on a "dry-weight" basis

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
<th>Units</th>
<th>Report Limit</th>
<th>DF</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>CAS No.</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Moisture</td>
<td>14.7%</td>
<td>%</td>
<td>0.50</td>
<td>1</td>
<td>09/15/14 00:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9034 Sulfide, Titration</td>
<td>ND mg/kg</td>
<td>58.6</td>
<td>09/15/14 16:11</td>
<td>1</td>
<td>09/15/14 16:20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH at 25 Degrees C</td>
<td>6.5 Std. Units</td>
<td>0.10</td>
<td>09/22/14 14:00</td>
<td>1</td>
<td>H1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidation/Reduction Potential</td>
<td>98.1 mV</td>
<td>1.0</td>
<td>09/16/14 14:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity</td>
<td>ND mg/kg</td>
<td>115</td>
<td>09/18/14 14:00</td>
<td>10</td>
<td>09/19/14 12:59 14887-00-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>ND mg/kg</td>
<td>115</td>
<td>09/18/14 14:00</td>
<td>10</td>
<td>09/19/14 12:59 14808-79-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>ND mg/kg</td>
<td>115</td>
<td>09/18/14 14:00</td>
<td>10</td>
<td>09/19/14 12:59 14808-79-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.
ANALYTICAL RESULTS

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

Sample: B-2 4-5’
Lab ID: 60177647002
Collected: 09/09/14 08:00
Received: 09/09/14 17:10
Matrix: Solid

Results reported on a "dry-weight" basis

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Results</th>
<th>Units</th>
<th>Report Limit</th>
<th>DF</th>
<th>Prepared</th>
<th>Analyzed</th>
<th>CAS No.</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Moisture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent Moisture</td>
<td>17.6 %</td>
<td></td>
<td>0.50</td>
<td>1</td>
<td>09/15/14 00:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9034 Sulfide, Titration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfide</td>
<td>ND mg/kg</td>
<td></td>
<td>60.7</td>
<td>1</td>
<td>09/15/14 16:11</td>
<td>09/15/14 16:20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9045 pH Soil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH at 25 Degrees C</td>
<td>6.5</td>
<td>Std. Units</td>
<td>0.10</td>
<td>1</td>
<td>09/22/14 14:00</td>
<td></td>
<td>H1</td>
<td></td>
</tr>
<tr>
<td>Oxidation/Reduction Potential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxidation/Reduction Potential</td>
<td>77.7 mV</td>
<td></td>
<td>1.0</td>
<td>1</td>
<td>09/16/14 14:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistivity</td>
<td>15800 ohms-cm</td>
<td></td>
<td>100</td>
<td>1</td>
<td>09/22/14 16:00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9056 IC Anions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>ND mg/kg</td>
<td></td>
<td>122</td>
<td>10</td>
<td>09/18/14 14:00</td>
<td>09/19/14 13:44</td>
<td>16887-00-6</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>ND mg/kg</td>
<td></td>
<td>122</td>
<td>10</td>
<td>09/18/14 14:00</td>
<td>09/19/14 13:44</td>
<td>14808-79-8</td>
<td></td>
</tr>
</tbody>
</table>

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Date: 09/24/2014 04:57 PM
QUALITY CONTROL DATA

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

QC Batch: PMST/10016
QC Batch Method: ASTM D2974
Analysis Method: ASTM D2974
Analysis Description: Dry Weight/Percent Moisture
Associated Lab Samples: 60177647001, 60177647002

METHOD BLANK: 1442878
Matrix: Solid
Associated Lab Samples: 60177647001, 60177647002

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Blank Result</th>
<th>Reporting Limit</th>
<th>Analyzed</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Moisture</td>
<td>%</td>
<td>ND</td>
<td>0.50</td>
<td>09/15/14 00:00</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DUPLICATE: 1442879

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>60177391001 Result</th>
<th>Dup Result</th>
<th>Max RPD</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent Moisture</td>
<td>%</td>
<td>15.8</td>
<td>15.9</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.
QUALITY CONTROL DATA

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

QC Batch: WET/3465
Analysis Method: EPA 9034
QC Batch Method: EPA 9030B
Analysis Description: 9034 Sulfide Solid
Associated Lab Samples: 60177647001, 60177647002

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Blank Result</th>
<th>Reporting Limit</th>
<th>Analyzed</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfide</td>
<td>mg/kg</td>
<td>ND</td>
<td>50.0</td>
<td>09/15/14 16:20</td>
<td></td>
</tr>
</tbody>
</table>

LABORATORY CONTROL SAMPLE: 50611

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Spike Conc.</th>
<th>LCS Result</th>
<th>LCS % Rec</th>
<th>% Rec Limits</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfide</td>
<td>mg/kg</td>
<td>1000</td>
<td>922</td>
<td>92</td>
<td>80-120</td>
<td></td>
</tr>
</tbody>
</table>

MATRIX SPIKE SAMPLE: 50613

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>60177647001 Result</th>
<th>Spike Conc.</th>
<th>MS Result</th>
<th>MS % Rec</th>
<th>% Rec Limits</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfide</td>
<td>mg/kg</td>
<td>ND</td>
<td>1170</td>
<td>1080</td>
<td>88</td>
<td>75-125</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DUPLICATE: 50612

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>60177647001 Result</th>
<th>Dup Result</th>
<th>RPD</th>
<th>Max RPD</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfide</td>
<td>mg/kg</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.
QUALITY CONTROL DATA

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

QC Batch: WET/50416
QC Batch Method: EPA 9045
Analysis Method: EPA 9045
Analysis Description: 9045 pH
Associated Lab Samples: 60177647001, 60177647002

SAMPLE DUPLICATE: 1447189

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>60177647001 Result</th>
<th>Dup Result</th>
<th>RPD</th>
<th>Max RPD</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH at 25 Degrees C</td>
<td>Std. Units</td>
<td>6.5</td>
<td>6.5</td>
<td>0</td>
<td>3</td>
<td>H1</td>
</tr>
</tbody>
</table>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.
QUALITY CONTROL DATA

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

QC Batch: WET/50307
QC Batch Method: SM 2580B
Analysis Method: SM 2580B
Analysis Description: Oxidation/Reduction Potential

Associated Lab Samples: 60177647001, 60177647002

SAMPLE DUPLICATE: 1443720

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>60177647001 Result</th>
<th>Dup Result</th>
<th>RPD</th>
<th>Max RPD</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation/Reduction Potential</td>
<td>mV</td>
<td>98.1</td>
<td>100</td>
<td>2</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.
QUALITY CONTROL DATA

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

<table>
<thead>
<tr>
<th>QC Batch:</th>
<th>WETA/31058</th>
<th>Analysis Method:</th>
<th>EPA 9056</th>
</tr>
</thead>
<tbody>
<tr>
<td>QC Batch Method:</td>
<td>EPA 9056</td>
<td>Analysis Description:</td>
<td>9056 IC Anions</td>
</tr>
<tr>
<td>Associated Lab Samples:</td>
<td>60177647001, 60177647002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METHOD BLANK: 1445098
Matrix: Solid
Associated Lab Samples: 60177647001, 60177647002

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Blank Result</th>
<th>Reporting Limit</th>
<th>Analyzed</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>mg/kg</td>
<td>ND</td>
<td>99.4</td>
<td>09/19/14 12:30</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/kg</td>
<td>ND</td>
<td>99.4</td>
<td>09/19/14 12:30</td>
<td></td>
</tr>
</tbody>
</table>

LABORATORY CONTROL SAMPLE: 1445099

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>Spike Conc.</th>
<th>LCS Result</th>
<th>LCS % Rec</th>
<th>% Rec Limits</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>mg/kg</td>
<td>499</td>
<td>487</td>
<td>98</td>
<td>80-120</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/kg</td>
<td>499</td>
<td>482</td>
<td>97</td>
<td>80-120</td>
<td></td>
</tr>
</tbody>
</table>

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1445100
Associated Lab Samples: 60177647001, 60177647002

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>MS Spike Conc.</th>
<th>MSD Spike Conc.</th>
<th>MS Result</th>
<th>MSD Result</th>
<th>MS % Rec</th>
<th>MSD % Rec</th>
<th>% Rec Limits</th>
<th>RPD</th>
<th>Max RPD</th>
<th>Qual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>mg/kg</td>
<td>ND</td>
<td>577</td>
<td>546</td>
<td>560</td>
<td>95</td>
<td>97</td>
<td>80-120</td>
<td>3</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/kg</td>
<td>ND</td>
<td>577</td>
<td>551</td>
<td>560</td>
<td>96</td>
<td>97</td>
<td>80-120</td>
<td>2</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE DUPLICATE: 1445102

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Units</th>
<th>60177647002 Result</th>
<th>Dup Result</th>
<th>RPD</th>
<th>Max RPD</th>
<th>Qualifiers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>mg/kg</td>
<td>ND</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfate</td>
<td>mg/kg</td>
<td>ND</td>
<td>45.2J</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Date: 09/24/2014 04:57 PM
Page 11 of 15
QUALIFIERS

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.
ND - Not Detected at or above adjusted reporting limit.
J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.
MDL - Adjusted Method Detection Limit.
PQL - Practical Quantitation Limit.
RL - Reporting Limit.
S - Surrogate
1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.
Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.
LCS(D) - Laboratory Control Sample (Duplicate)
MS(D) - Matrix Spike (Duplicate)
DUP - Sample Duplicate
RPD - Relative Percent Difference
NC - Not Calculable.
SG - Silica Gel - Clean-Up
U - Indicates the compound was analyzed for, but not detected.
N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.
Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.
TNI - The NELAC Institute.

LABORATORIES

PASI-K Pace Analytical Services - Kansas City
PASI-N Pace Analytical Services - New Orleans

ANALYTE QUALIFIERS

H1 Analysis conducted outside the EPA method holding time.
QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: STRATFORD WATER TOWER
Pace Project No.: 60177647

<table>
<thead>
<tr>
<th>Lab ID</th>
<th>Sample ID</th>
<th>QC Batch Method</th>
<th>QC Batch</th>
<th>Analytical Method</th>
<th>Analytical Batch</th>
</tr>
</thead>
<tbody>
<tr>
<td>60177647001</td>
<td>B-1 4-5'</td>
<td>ASTM D2974</td>
<td>PMST/10016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60177647002</td>
<td>B-2 4-5'</td>
<td>ASTM D2974</td>
<td>PMST/10016</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60177647001</td>
<td>B-1 4-5'</td>
<td>EPA 9030B</td>
<td>WET/3465</td>
<td>EPA 9034</td>
<td>WET/3475</td>
</tr>
<tr>
<td>60177647001</td>
<td>B-2 4-5'</td>
<td>EPA 9030B</td>
<td>WET/3465</td>
<td>EPA 9034</td>
<td>WET/3475</td>
</tr>
<tr>
<td>60177647001</td>
<td>B-1 4-5'</td>
<td>EPA 9045</td>
<td>WET/50416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60177647001</td>
<td>B-2 4-5'</td>
<td>EPA 9045</td>
<td>WET/50416</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60177647001</td>
<td>B-1 4-5'</td>
<td>SM 2580B</td>
<td>WET/50307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60177647001</td>
<td>B-2 4-5'</td>
<td>SM 2580B</td>
<td>WET/50307</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60177647001</td>
<td>B-1 4-5'</td>
<td>EPA 120.1 Resistivity</td>
<td>WET/50428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60177647001</td>
<td>B-2 4-5'</td>
<td>EPA 120.1 Resistivity</td>
<td>WET/50428</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60177647001</td>
<td>B-1 4-5'</td>
<td>EPA 9056</td>
<td>WETA/31058</td>
<td>EPA 9056</td>
<td>WETA/31059</td>
</tr>
<tr>
<td>60177647001</td>
<td>B-2 4-5'</td>
<td>EPA 9056</td>
<td>WETA/31058</td>
<td>EPA 9056</td>
<td>WETA/31059</td>
</tr>
</tbody>
</table>

REPORT OF LABORATORY ANALYSIS
This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Date: 09/24/2014 04:57 PM
Client Name: Karl Valley
Courier: Fed Ex □ UPS □ USPS □ Client □ Commercial □ Pace □ Other □
Tracking #: ___________ Pace Shipping Label Used? Yes □ No □
Custody Seal on Cooler/Box Present: Yes □ No □ Seals intact: Yes □ No □
Packing Material: Bubble Wrap □ Bubble Bags □ Foam □ None □ Other □
Thermometer Used: T-239) T-194 Type of Ice: Wet □ Blue □ None □
Cooler Temperature: 22°C

<table>
<thead>
<tr>
<th>Item</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature should be above freezing to 6°C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of Custody present:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of Custody filled out:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chain of Custody relinquished:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sampler name & signature on COC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Samples arrived within holding time:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Hold Time analyses (<72hr):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rush Turn Around Time requested:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sufficient volume:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correct containers used:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pace containers used:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Containers intact:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unpreserved 5035A soils frozen w/in 48hrs?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filtered volume received for dissolved tests?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample labels match COC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Includes date/time/ID/analyses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All containers needing preservation have been checked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All containers needing preservation are found to be in compliance with EPA recommendations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water), Phenolics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trip Blank present:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pace Trip Blank lot # (if purchased):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headspace in VOA vials (>6mm):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project sampled in USDA Regulated Area:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client Notification/ Resolution: Copy COC to Client?</td>
<td>Y</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Person Contacted:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comments/Resolution:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project Manager Review:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SAMPLE ID

Identification

- **Sample ID No.** A-Z, 0-9,
- **Sample IDa MUST BE UNIQUE**

Matrix Code

- **Matrix Code** (use with code in left)
 - Drinking Water: DW
 - Water: WT
 - Waste Water: WW
 - Product: P
 - Soil/Solid: SL
 - Oil: OL
 - Wipe: WP
 - Air: AR
 - Tissue: TS
 - Other: OT

<table>
<thead>
<tr>
<th>Item #</th>
<th>DATE</th>
<th>TIME</th>
<th>DATE</th>
<th>TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SLG 9-9</td>
<td>4-5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SLG 9-9</td>
<td>4-5</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Additional Comments

- **Contact Keis Moore**
- **Before Running**
- **Tests. @94596-

Analysis Test

- **Residual Chlorine (Y/N):** Y
- **Pace Project No./ Lab I.D.:** 6017 7647
- **Temp in C:**

Sample Conditions

- **Received on site (Y/N):** Y
- **Relinquished by / Affiliation:**
- **Contacted by:**
- **Signature of Sampler:**
- **Date Signed (MM/DD/YYYY):** 09 MAY 2014

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>7460</td>
<td>Oska silty clay loam, 3 to 6 percent slopes</td>
<td>1.2</td>
<td>26.1%</td>
</tr>
<tr>
<td>8962</td>
<td>Woodson silt loam, 1 to 3 percent slopes</td>
<td>3.5</td>
<td>73.9%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>4.7</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Soils that have profiles that are almost alike make up a soil series. All the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of a given series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Additional information about the map units described in this report is available in other soil reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the soil reports define some of the properties included in the map unit descriptions.

Report—Map Unit Description

Douglas County, Kansas

7460—Oska silty clay loam, 3 to 6 percent slopes

Map Unit Setting
National map unit symbol: 119fz
Elevation: 700 to 1,200 feet
Mean annual precipitation: 31 to 47 inches
Mean annual air temperature: 52 to 59 degrees F
Frost-free period: 175 to 215 days
Farmland classification: Farmland of statewide importance
Map Unit Composition
Oska and similar soils: 88 percent
Estimates are based on observations, descriptions, and transects of the
mapunit.

Description of Oska

Setting
Landform: Hillslopes
Landform position (three-dimensional): Crest, side slope
Down-slope shape: Convex
Across-slope shape: Convex
Parent material: Silty and clayey residuum weathered from limestone
and shale

Typical profile
Ap - 0 to 9 inches: silty clay loam
Bt - 9 to 31 inches: silty clay
C - 31 to 38 inches: silty clay loam
R - 38 to 42 inches: bedrock

Properties and qualities
Slope: 3 to 6 percent
Depth to restrictive feature: 20 to 39 inches to lithic bedrock
Natural drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low
to moderately high (0.00 to 0.20 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Moderate (about 6.4 inches)

Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: C
Ecological site: Loamy upland (draft) (pe 35-42) (R112XY015KS)

8962—Woodson silt loam, 1 to 3 percent slopes

Map Unit Setting
National map unit symbol: 2thdw
Elevation: 810 to 1,200 feet
Mean annual precipitation: 37 to 43 inches
Mean annual air temperature: 55 to 59 degrees F
Frost-free period: 175 to 225 days
Farmland classification: All areas are prime farmland

Map Unit Composition
Woodson and similar soils: 90 percent
Minor components: 0 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Woodson

Setting
- Landform: Divides
- Landform position (two-dimensional): Summit
- Landform position (three-dimensional): Interfluve
- Down-slope shape: Convex
- Across-slope shape: Linear
- Parent material: Silty loess and/or silty and clayey alluvium

Typical profile
- Ap - 0 to 8 inches: silt loam
- Bt1 - 8 to 18 inches: silty clay
- Bt2 - 18 to 31 inches: silty clay
- BC - 31 to 43 inches: silty clay
- C - 43 to 79 inches: silty clay

Properties and qualities
- Slope: 1 to 3 percent
- Depth to restrictive feature: More than 80 inches
- Natural drainage class: Somewhat poorly drained
- Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
- Depth to water table: About 6 to 24 inches
- Frequency of flooding: None
- Frequency of ponding: None
- Salinity, maximum in profile: Nonsaline to very slightly saline (0.0 to 4.0 mmhos/cm)
- Sodium adsorption ratio, maximum in profile: 7.0
- Available water storage in profile: Moderate (about 7.6 inches)

Interpretive groups
- Land capability classification (irrigated): None specified
- Land capability classification (nonirrigated): 2s
- Hydrologic Soil Group: D
- Ecological site: Clay upland (pe 35-42) (R112XY007KS)

Minor Components

Aquolls
- Percent of map unit: 0 percent
- Landform: Divides
- Landform position (two-dimensional): Summit
- Landform position (three-dimensional): Interfluve
- Down-slope shape: Concave
- Across-slope shape: Concave
Ecological site: Clay upland (pe 35-42) (R112XY007KS)

Data Source Information

Soil Survey Area: Douglas County, Kansas
Survey Area Data: Version 10, Dec 5, 2013
APPENDIX D

BEDROCK INFORMATION
APPENDIX E

FIELD RESISTIVITY TEST RESULTS
<table>
<thead>
<tr>
<th>AREA</th>
<th>MEASURED</th>
<th>CALCULATED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.05</td>
<td>5291</td>
</tr>
<tr>
<td>2</td>
<td>8.23</td>
<td>3941</td>
</tr>
<tr>
<td>3</td>
<td>9.40</td>
<td>4501</td>
</tr>
<tr>
<td>4</td>
<td>6.93</td>
<td>3318</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AREA</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>478.8*R</td>
<td>957.5*R</td>
<td>1915*R</td>
<td>2873*R</td>
<td>3830*R</td>
<td>4788*R</td>
<td>5745*R</td>
</tr>
<tr>
<td>2</td>
<td>5291</td>
<td>3466</td>
<td>4902</td>
<td>6091</td>
<td>7469</td>
<td>8954</td>
<td>10284</td>
</tr>
<tr>
<td>3</td>
<td>3941</td>
<td>3380</td>
<td>4309</td>
<td>6005</td>
<td>7086</td>
<td>8331</td>
<td>9709</td>
</tr>
<tr>
<td>4</td>
<td>3318</td>
<td>3198</td>
<td>5190</td>
<td>7039</td>
<td>8579</td>
<td>10246</td>
<td>11318</td>
</tr>
</tbody>
</table>

AREA 1 - NORTH OF BORING B-1, EAST TO WEST
AREA 2 - SOUTH OF BORING B-1, EAST TO WEST
AREA 3 - WEST OF BORING B-1, NORTH TO SOUTH
AREA 4 - EAST OF BORING B-1, NORTH TO SOUTH
<table>
<thead>
<tr>
<th>A= (ft)</th>
<th>2.5</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMULA</td>
<td>478.8*R</td>
<td>957.5*R</td>
<td>1915*R</td>
<td>2873*R</td>
<td>3830*R</td>
<td>4788*R</td>
<td>5745*R</td>
</tr>
<tr>
<td>AREA 1</td>
<td>MEASURED</td>
<td>6.88</td>
<td>3.18</td>
<td>2.32</td>
<td>1.99</td>
<td>1.89</td>
<td>1.74</td>
</tr>
<tr>
<td></td>
<td>CALCULATED</td>
<td>3294</td>
<td>3045</td>
<td>4443</td>
<td>5717</td>
<td>7239</td>
<td>8331</td>
</tr>
<tr>
<td>AREA 2</td>
<td>MEASURED</td>
<td>6.21</td>
<td>2.42</td>
<td>2.05</td>
<td>1.79</td>
<td>1.62</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>CALCULATED</td>
<td>2973</td>
<td>2317</td>
<td>3926</td>
<td>5143</td>
<td>6205</td>
<td>6847</td>
</tr>
<tr>
<td>AREA 3</td>
<td>MEASURED</td>
<td>4.27</td>
<td>2.30</td>
<td>1.94</td>
<td>1.76</td>
<td>1.65</td>
<td>1.48</td>
</tr>
<tr>
<td></td>
<td>CALCULATED</td>
<td>2044</td>
<td>2202</td>
<td>3715</td>
<td>5056</td>
<td>6320</td>
<td>7086</td>
</tr>
<tr>
<td>AREA 4</td>
<td>MEASURED</td>
<td>5.25</td>
<td>2.58</td>
<td>2.07</td>
<td>2.12</td>
<td>1.86</td>
<td>1.60</td>
</tr>
<tr>
<td></td>
<td>CALCULATED</td>
<td>2514</td>
<td>2470</td>
<td>3964</td>
<td>6091</td>
<td>7124</td>
<td>7661</td>
</tr>
</tbody>
</table>

AREA 1 - NORTH OF BORING B-2, EAST TO WEST
AREA 2 - SOUTH OF BORING B-2, EAST TO WEST
AREA 3 - WEST OF BORING B-2, NORTH TO SOUTH
AREA 4 - EAST OF BORING B-2, NORTH TO SOUTH