Mid-America Green Fleets Analysis
Lawrence, Kansas

GOVERNING BODY PRESENTATION
JULY 10, 2024
In the past five years alone, MEC has effectively managed $25 million in federal grants to disperse training, resources, and new technology across Kansas and Missouri.

- 40 years of energy efficiency

Building Performance
- Commercial and residential buildings
- Project Living Proof demo home in heart of KC

Sustainable Transportation
- Kansas City Regional Clean Cities - 1998
- Central Kansas Clean Cities - 2013
Energy Code Training Provided to the Kansas City Region

Courses are funded by a grant from the U.S. Department of Energy via the City of Kansas City, MO.
EVs for Water Services, General Services, and Neighborhood and Housing Services – KCMO

Deployment of all-electric shuttle buses – KCI

Deployment of all-electric yard trucks – KS & MO

Beam Solar EV Charger – Olathe, KS

EV Streetlight Chargers – KCMO

EVs for Water Services, General Services, and Neighborhood and Housing Services – KCMO
Purpose of Fleet Analysis

City Ordinance No. 9744
- City of Lawrence committed to transition their entire fleet sector to renewable energy by 2035.
- Established municipal and community-wide renewable energy goals for the City, aiming to reduce transportation emissions and go carbon neutral.

Consulting with Technology Experts
- MEC & Energetics worked together to create a transition plan for Lawrence.
 - MEC conducts fleet analyses through our Mid America Green Fleets Program with the goal of improving the environmental performance of local govt vehicles across the region.
 - Energetics is a clean energy consultancy that collaboratively works with state and local entities to help smartly, and cost effectively integrate clean energy technologies and strategies into real world fleets.

Transition Plan Timeline
- Originally intended to go into effect in budget year 2025, but due to scheduling concerns and issues with data and recommendations, the City and MEC decided to push the deployment date to 2026.
Scope of Analysis

Total fleet size: 578 vehicles

- Light Duty Vehicles (LD) - 235 vehicles
 - Sedans, Compact Utility Vehicles (CUVs), Sport Utility Vehicles (SUVs), pickup trucks and vans
- Medium-Heavy Duty Vehicles (MD/HD) - 343 vehicles
 - Larger pickup trucks, larger vans and a single medium duty bus operated by the City
 - Dump trucks, snowplows, loaders, excavators, tractors, etc.

- Analyzing the current fleet usage and emissions allowed MEC & Energetics to develop lists of replacement vehicles for each category.
 - In some cases, fully electric vehicles are not realistic because there are limited models available.

- Analyzing vehicle storage locations and their electrical capacity to develop lists of charging stations to be installed and where they should be located.
Fleet Breakdown

According to data provided for the analysis:

- 129 vehicles are currently operating beyond their planned lifecycle
- 168 vehicles are in the last 5 years of their lifecycle
- 146 vehicles have between 5-10 years left in their lifecycle
- 135 vehicles have 10+ years left in their lifecycle

Lifecycle Analysis

<table>
<thead>
<tr>
<th>Vehicle Class</th>
<th>Lifecycle Assumption (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light-Duty</td>
<td>10</td>
</tr>
<tr>
<td>Medium-Duty</td>
<td>15</td>
</tr>
<tr>
<td>Heavy-Duty</td>
<td>20</td>
</tr>
<tr>
<td>Non-Road</td>
<td>15</td>
</tr>
</tbody>
</table>

Police Department Light-Duty Vehicle Lifecycles are typically 3-4 years for pursuit vehicles and 10 years for admin vehicles. However, pursuit vehicles are retired to other departments when possible after the lifecycle period.
Vehicle Replacement Scenario Evaluation

Two scenarios determined the most logical approach to transitioning the fleet by 2036:

- **Balanced Vehicle Replacement Scenario**: Focused on replacing equal numbers of vehicles annually, large fluctuations in annual expenditures. Costs estimated to be between $4.3 million and $13 million.

- **Balanced Annual Expenditure Scenario**: The number of vehicles recommended for replacement is calculated based on the cost of each group to balance the annual capital expenditure for vehicle purchases. There is less variability in this scenario, with all years ranging from $4.5 million to $12 million.
Estimated Costs and Comparison

- Roughly $9 million annually to replace vehicles from 2026-2036
 - Total = $102,184,164.00
- Some MD and HD vehicles require separate body expenses
 - Total = $18,192,000
- Total infrastructure costs
 - Total = $2,618,075.00
- Grand Total: $122,994,239

Table 20 & 21. Summary of vehicle replacement recommendations (20), estimated body cost (21), 2029

<table>
<thead>
<tr>
<th>Vehicle Class/Type</th>
<th>Vehicle Count</th>
<th>Average of GHG Savings (Metric Tons)</th>
<th>Sum of EV Replacement Cost</th>
<th>Average of Annual EV Maintenance Savings</th>
<th>Average of Annual EV Fuel Savings</th>
<th>Average of Total Annual EV Cost Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td>7</td>
<td>0.12</td>
<td>$464,746</td>
<td>$636.15</td>
<td>$108.11</td>
<td>$744.26</td>
</tr>
<tr>
<td>Pickup</td>
<td>2</td>
<td>1.72</td>
<td>$149,177</td>
<td>$454.01</td>
<td>$562.19</td>
<td>$1,016.20</td>
</tr>
<tr>
<td>SUV</td>
<td>1</td>
<td>1.23</td>
<td>$63,114</td>
<td>$136.08</td>
<td>$414.89</td>
<td>$550.97</td>
</tr>
<tr>
<td>SUV - Pursuit</td>
<td>4</td>
<td>-1.00</td>
<td>$252,455</td>
<td>$1,341.24</td>
<td>-143.10</td>
<td>-1,198.14</td>
</tr>
<tr>
<td>MD</td>
<td>29</td>
<td>5.07</td>
<td>$4,790,907</td>
<td>$1,485.06</td>
<td>$1,353.64</td>
<td>$2,838.70</td>
</tr>
<tr>
<td>MD Pickup</td>
<td>10</td>
<td>4.00</td>
<td>$1,147,523</td>
<td>$1,022.14</td>
<td>$930.08</td>
<td>$1,952.22</td>
</tr>
<tr>
<td>MD Truck</td>
<td>15</td>
<td>9.72</td>
<td>$3,270,440</td>
<td>$3,652.95</td>
<td>$2,757.09</td>
<td>$6,410.05</td>
</tr>
<tr>
<td>MD Van</td>
<td>4</td>
<td>3.85</td>
<td>$372,944</td>
<td>$649.13</td>
<td>$1,259.50</td>
<td>$1,908.63</td>
</tr>
<tr>
<td>HD</td>
<td>9</td>
<td>14.25</td>
<td>$7,298,246</td>
<td>$8,131.32</td>
<td>$687.07</td>
<td>$8,818.39</td>
</tr>
<tr>
<td>HD Truck</td>
<td>6</td>
<td>7.47</td>
<td>$3,167,163</td>
<td>$4,740.26</td>
<td>$400.29</td>
<td>$5,140.55</td>
</tr>
<tr>
<td>HD Firetruck</td>
<td>2</td>
<td>8.98</td>
<td>$3,442,569</td>
<td>$6,252.30</td>
<td>$536.53</td>
<td>$6,788.84</td>
</tr>
<tr>
<td>HD Refuse</td>
<td>1</td>
<td>18.77</td>
<td>$688,514</td>
<td>$9,936.95</td>
<td>$834.74</td>
<td>$10,771.69</td>
</tr>
<tr>
<td>Grand Total</td>
<td>45</td>
<td>5.64</td>
<td>$12,553,899</td>
<td>$2,514.02</td>
<td>$950.70</td>
<td>$3,464.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Body Cost</th>
<th>Vehicle Cost (with body)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td>$0</td>
<td>$464,746</td>
</tr>
<tr>
<td>MD</td>
<td>$2,085,000</td>
<td>$6,875,907</td>
</tr>
<tr>
<td>HD</td>
<td>$703,000</td>
<td>$8,001,246</td>
</tr>
<tr>
<td>Grand Total</td>
<td>$2,788,000</td>
<td>$15,341,902</td>
</tr>
</tbody>
</table>
Light Duty Vehicles – Currently in Use

- 235 LD vehicles
 - Compact cars
 - Sedans
 - Compact Utility Vehicles (Ford Escapes)
 - Sport Utility Vehicles
 - Pickup trucks (Ford F150s)
 - Vans

- 34% of LD vehicles are pursuit vehicles (81), most commonly police interceptors
LD Vehicles – Possible Replacements

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>EV Option</th>
<th>EV Cost *</th>
<th>EV Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedan</td>
<td>Chevrolet Equinox EV</td>
<td>$35,000</td>
<td>2024</td>
</tr>
<tr>
<td>CUV</td>
<td>Chevrolet Equinox EV</td>
<td>$35,000</td>
<td>2024</td>
</tr>
</tbody>
</table>

* Other EV options in this classification include the Hyundai Kona EV and the Volkswagen ID.4

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>EV Option</th>
<th>EV Cost *</th>
<th>EV Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUV</td>
<td>Ford Mustang Mach-E</td>
<td>$43,000</td>
<td>2024</td>
</tr>
<tr>
<td>SUV – Pursuit</td>
<td>Chevrolet Blazer EV PPV</td>
<td>$57,000 **</td>
<td>2024</td>
</tr>
</tbody>
</table>

* Other non-pursuit EV options in this classification include the Chevrolet Blazer EV, and the Volkswagen ID.4.
** Vehicle cost only.

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>EV Option</th>
<th>EV Cost *</th>
<th>EV Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD Pickup Truck</td>
<td>Ford F-150 Lightning</td>
<td>$65,000</td>
<td>2023</td>
</tr>
</tbody>
</table>

* Other options in classification include the Chevrolet Silverado EV, and the Rivian R1T.

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>EV Option</th>
<th>EV Cost</th>
<th>EV Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cargo Van</td>
<td>Ford E-Transit</td>
<td>$60,000</td>
<td>2023</td>
</tr>
</tbody>
</table>

* Other EV options in this classification include the Chrysler Pacifica PHEV and Lightning eMotors Transit EV.
Medium Duty Vehicles – Currently in Use

- 98 MD vehicles
 - Larger pickup trucks
 - Vans
 - Straight trucks
 - Box trucks
 - Special Use vehicles
MD Vehicles – Possible Replacements

- Currently a limited amount of electric models are available for vehicles in this class, but there are still options:
 - Ford E-Transit Cutaway
 - Hino M5e
 - GreenPower EV Star Cab & Chassis
 - Other options also available
Heavy Duty Vehicles – Currently in Use

- 109 heavy duty vehicles
 - Larger pickup trucks
 - Vans
 - Straight trucks
 - Box trucks
 - Special Use vehicles
HD Vehicles – Possible Replacements

- Currently a limited amount of electric models are available for vehicles in this class, but there are still options:
 - Volvo VNR Electric
 - Mack MD Electric
 - Mack LR Electric
 - Pierce Volterra
Other Options for MD/HD

- Alternative options for MD and HD vehicles
 - Operating the vehicles with Biodiesel (B20, B50), CNG, or Propane
 - In the case where no feasible zero emissions vehicles exist, GHG reduction efforts can be focused on to meet near term emissions reductions goals
Examples of Alternative Options

<table>
<thead>
<tr>
<th>Vehicle Class/Type</th>
<th>Vehicle Count</th>
<th>Alternative Fuel Vehicle Replacement</th>
<th>Average Cost</th>
<th>Fuel Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pickup</td>
<td>5</td>
<td>Chevrolet Silverado 1500</td>
<td>$56,466</td>
<td>Biodiesel</td>
</tr>
<tr>
<td>Sedan</td>
<td>1</td>
<td>Toyota Mirai XLE</td>
<td>$49,500</td>
<td>Hydrogen</td>
</tr>
<tr>
<td>MD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD Pickup</td>
<td>4</td>
<td>Ford F-150/250/350 Truck</td>
<td>$50,000</td>
<td>RNG/CNG</td>
</tr>
<tr>
<td>MD Truck</td>
<td>7</td>
<td>Peterbilt Model 536</td>
<td>$125,000</td>
<td>CNG</td>
</tr>
<tr>
<td>MD Van</td>
<td>1</td>
<td>Ford Transit Van and Cutaway</td>
<td>$42,000</td>
<td>Propane, Hydrogen</td>
</tr>
<tr>
<td>HD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD Truck</td>
<td>27</td>
<td>Freightliner Cascadia Natural Gas</td>
<td>$153,000</td>
<td>LNG/CNG</td>
</tr>
<tr>
<td>HD Refuse Truck</td>
<td>14</td>
<td>Heil Environmental Side Loader: Durapack Python</td>
<td>$150,000</td>
<td>CNG</td>
</tr>
</tbody>
</table>

Table 3.7. Alternative Vehicle Options to EVs
Other Vehicles in the Fleet

- Assortment of non-road vehicles including:
 - Utility task vehicles (UTVs)
 - Golf carts
 - Tractors
 - Larger mowers

- The city also operates:
 - 5 alternative fuel vehicles
 - 9 electrified vehicles
Charging Stations

- **Level 1**
 - 120 volts (V) providing up to 2.4 kilowatts (kW) of charging per hour (roughly 2-5 miles)
 - Typical for consumer level vehicles, standard set comes with most vehicles

- **Level 2**
 - 240 volts (V) providing maximum output of 2.8-19.2 kW (average 6.6 kWs per hour, or 10-80 miles per hour)
 - Typical for at home charging stations at the consumer level, and many public charging stations

- **DCFC**
 - 480 VAC converted to DC to power EV batteries, power level ranges from 25 kW to 350 kW
 - Most suitable for larger fleets that can afford the high price barriers of DCFC technology
Fleet Vehicle Charging Locations

- The City of Lawrence determined approximately 30 locations for EVSE technology.
- 14 of the 30 locations were used to estimate the anticipated EV charging infrastructure needs.
- The infrastructure needs are presented in a manner that distinguishes the demand for charging resulting from the electrification of LD (Light duty) vehicles independent from the electrification of MHD (Medium/Heavy duty) vehicles.
Site Examples

Central Maintenance Garage, 1141 Haskell Avenue
Site Examples

Fire Station #1, 746 Kentucky Street
Site Examples

Traffic Administration, 455 Mississippi Street
Policy Change Recommendations

- Although EV adoption is increasing rapidly, there are still barriers to come. By implementing transportation electrification policies, the city can streamline the deployment process.
 - Develop a DEI plan (Diversity, Equity, and Inclusion) to ensure a diversity of experience and expertise, making sure to include/represent all residents impacted most by transportation pollution.
 - Contact Evergy to identify existing electricity capacity at potential charging sites
 - Develop a strategy and funding mechanism to purchase EVs and address upfront costs
 - Review local floodplain rules and regulations along with zoning policies
 - Standardize permitting processes so contractors and City staff know what information and documentation is needed to install EVSE
 - Ensure training program is in place for fleet drivers, vehicle technicians, maintenance staff and first responders
 - Implement EV ready requirements in building codes for city-owned buildings and facilities
Identified Funding Opportunities

- DERA (Diesel Emissions Reduction Act)
 - Diesel fleet vehicles of class Medium and Heavy Duty (Class 5 and above) are scrapped for cleaner alternative fuel vehicles, purchased through federal funding

- CFI
 - $700 million offered to strategically deploy EV charging infrastructure

- Evergy Rebate Program
 - Qualifying fleets/consumers can receive funding to offset charging station installation costs (Level 2 and DCFC)
Risk Analysis

- **Electric:**
 - Market Supplier - Evergy is the sole electric distribution supplier for the City of Lawrence and all the City's facilities, supplier redundancy is not possible
 - Weather - Destructive weather events could interrupt power flow to the City's properties, Kansas is number 3 in the nation for annual tornados per square mile.
 - Even in cases where power outages occur, most vehicles should be fully charged based on expected outage times (winter storms, summer storms, heat waves)
 - Vehicle Availability - The availability of EVs, ZEVs, and BEVs is rapidly expanding and the prices are projected to decrease significantly as production prices drop over time, but currently supply can be hard to come by, and prices can be high

- **Alternative Fuels:**
 - Market Supplier - Fuel supplier's ability to reliably supply fuel types and volumes of fuel required by the City
 - Weather - Similar to electric, destructive weather events could interrupt power flow to the City's properties
 - Technological - Renewable fuels should meet industry-standard fuel specifications to ensure fuel quality and to meet engine manufacturers' requirements
Questions?

Taylor Corn, Program Coordinator
Sr. Public Relations Coordinator
taylor.corn@metroenergy.org

MEC’s energy efficient demo-home, Project Living Proof.